OPC Unified Architecture, Part 10
‑ 38 ‑
DRAFT 1.00

OPC Unified Architecture Specification
Part 10: Programs
1 Scope

This specification specifies the standard representation of Programs as part of the OPC Unified Architecture and its defined information model. This includes the description of the NodeClasses, standard Properties, Methods and Events and associated behaviour and information for Programs.

The complete address space model including all NodeClasses and Attributes is specified in Part 3. The services such as those used to invoke the Methods used to manage Programs are specified in Part 4.

2 Reference documents

Part 1 : OPC UA Specification: Part 1 – Concepts, Version 1.01 or later
http://www.opcfoundation.org/UA/Part1/
Part 3 : OPC UA Specification: Part 3 – Address Space Model, Version 1.01 or later
http://www.opcfoundation.org/UA/Part3/
Part 4 : OPC UA Specification: Part 4 – Services, Version 1.01 or later
http://www.opcfoundation.org/UA/Part4/
Part 5 : OPC UA Specification: Part 5 – Information Model, Version 1.01 or later
http://www.opcfoundation.org/UA/Part5/
Part 7 : OPC UA Specification: Part 7 – Profiles, Version 1.0 or later
http://www.opcfoundation.org/UA/Part7/
3 Terms, definitions, and abbreviations

3.1 OPC UA Part 1 terms

The following terms defined in Part 1 of this multi-part specification apply.

1) EventType

2) Information Model

3) Method

4) Node

5) NodeClass

6) Notification

7) Object

8) ObjectInstance

9) ObjectType

10) Program

11) Reference

12) ReferenceType

13) Service

14) Session

15) Subscription

16) Variable

3.2 OPC UA Part 3 terms

The following terms defined in Part 3 apply.

1. TypeDefinition Node

2. Property

3. Variable

3.3 OPC UA Program terms

The following terms are defined for OPC UA Programs.

3.3.1 Function

A Function is a programmatic task performed at a server or device, usually accomplished by computer code execution.
3.3.2 Program

A Program is a complex Function in a server or underlying system that can be invoked and managed by an OPC UA Client.
3.3.3 Finite State Machine

A Finite State Machine is a sequence of states and valid state transitions along with the causes and effects of those state transitions that define the actions of a Program in terms of discrete stages.

3.3.4 ProgramType

A ProgramType is an ObjectType Node that represents the type definition of a Program and is a subtype of the StateMachineType.

3.3.5 Program Control Method

A Program Control Method is a Method specified by this specification having specific semantics designed for the control of a Program by causing a state transition.

3.3.6 Program Invocation

A Program Invocation is a unique Object instance of a Program exiting on a Server. The Program Invocation is distinguished from other Object instances of the same ProgramType by the object node’s unique browse path.

3.4 Abbreviations and symbols

API
Application Programming Interface

DA
Data Access

FSM Finite State Machine

HMI Human Machine Interfaces

PCM Program Control Method

PGM
Program

PI
Program Invocation

PLC
Programmable Logic Controller

UA
Unified Architecture

UML
Unified Modelling Language

4 Concepts

4.1 General

Integrated automation facilities manage their operations through the exchange of data and coordinated invocation of system functions. Services are required to perform the data exchanges and to invoke the functions that constitute system operation. These functions may be invoked through human machine Interfaces, cell controllers, or other supervisory control and data acquisition type systems. OPC UA defines Methods and Programs as an interoperable way to advertise, discover, and request these functions. They provide a normalizing mechanism for the semantic description, invocation of, and result reporting of these functions. Together Methods and Programs complement the other OPC UA Services and ObjectTypes to facilitate the operation of an automation environment using a client server hierarchy.

[image: image1]
Figure 1 - Automation Facility Control

Methods and Programs model functions typically having different scopes, behaviours, lifetimes, and complexities in OPC Servers and the underlying systems. These functions are not normally characterized by the reading or writing of data which is accomplished with the OPC UA Attribute service set.

Methods represent basic functions in the server that can be invoked by a client. Programs by contrast, model more complex, stateful functionality in the system. For example, a method call may be used to perform a calculation or reset a counter. A Program is used to run and control a batch process, execute a machine tool part program, or manage a domain download. Methods and their invocation mechanism are described in Part 3 – Address Space Model and Part 4 - Services. This specification describes the extensions to, or specific use of the core capabilities defined in the first seven parts of the OPC UA multi-part specification required for Programs. Support for the feature described in this specification are described in Part 7 - Profiles
4.2 Programs
4.2.1 Overview
Programs are complex functions in a server or underlying system that can be invoked and managed by an OPC UA Client. Programs can represent any level of functionality within a system or process in which client control or intervention is required and progress monitoring is desired.

[image: image2.wmf]

Program

Transition Events

Control Methods

()

()

()

Monitor

Manage

State Machine

Result

Data

Get Results

Get Description

Figure 2 - Program Illustration

Programs are state full, transitioning through a prescribed sequence of states as they execute. Their behaviour is defined by a Program Finite State Machine (PFSM). The elements of the PFSM describe the phases of a Program’s execution in terms of valid transitions between a set of states, the stimuli or causes of those transitions, and the resultant effects of the transitions.

4.2.2 Program Finite State Machine

The statues, transitions, causes and effects that compose the Program Finite State Machine are listed in Table 1 and illustrated in Figure 3.
Table 1 - Program Finite State Machine

	No.
	Transition Name
	Cause
	From State
	To State
	Effect

	1
	HaltedToReady
	Reset Method
	Halted
	Ready
	Report Transition 1 Event/Result

	2
	ReadyToRunning
	Start Method
	Ready
	Running
	Report Transition 2 Event/Result

	3
	RunningToHalted
	Halt Method or Internal (Error)
	Running
	Halted
	Report Transition 3 Event/Result

	4
	RunningToReady
	Internal
	Running
	Ready
	Report Transition 4 Event/Result

	5
	RunningToSuspended
	Suspend Method
	Running
	Suspended
	Report Transition 5 Event/Result

	6
	SuspendedToRunning
	Resume Method
	Suspended
	Running
	Report Transition 6 Event/Result

	7
	SuspendedToHalted
	Halt Method
	Suspended
	Halted
	Report Transition 7 Event/Result

	8
	SuspendedToReady
	Internal
	Suspended
	Ready
	Report Transition 8 Event/Result

	9
	ReadyToHalted
	Halt Method
	Ready
	Halted
	Report Transition 9 Event/Result

[image: image3]
Figure 3 - Program States and Transitions

4.2.3 Program States

A standard set of base states are defined for Programs as part of the Program Finite State Machine. These states represent the stages in which a Program can exist at an instance in time as viewed by a client. This state is the Program’s Current State. All Programs must support this base set. A Program may or may not require a client action to cause the state to change.

Table 2 - Program States

	State
	Description

	Ready
	The Program is properly initialized and may be started.

	Running
	The Program is executing making progress towards completion.

	Suspended
	The Program has been stopped prior to reaching a terminal state but may be resumed.

	Halted
	The Program is in a terminal or failed state, and it cannot be started or resumed without being reset.

The set of states defined to describe a Program can be expanded. Program sub states can be defined for the base states to provide more resolution to the process and to describe the cause and effects of additional stimuli and transitions. Standards bodies and industry groups may extend the base Program Finite State Model to conform to industry models. For example, the Halted state can include the sub states “Aborted” and “Completed” to indicate if the function achieved a successful conclusion prior to the transition to Halted. Transitional states such as “Starting” or “Suspending” might also be extensions of the running state, for example.

4.2.4 State Transitions

A standard set of state transitions is defined for the Program Finite State Machine. These transitions define the valid changes to the Program’s current state in terms of an initial state and a resultant state.
Table 3 - Program State Transitions

	Transition No.
	Transition Name
	Initial State
	Resultant State

	1
	HaltedToReady
	Halted
	Ready

	2
	ReadyToRunning
	Ready
	Running

	3
	RunningToHalted
	Running
	Halted

	4
	RunningToReady
	Running
	Ready

	5
	RunningToSuspended
	Running
	Suspended

	6
	SuspendedToRunning
	Suspended
	Running

	7
	SuspendedToHalted
	Suspended
	Halted

	8
	SuspendedToReady
	Suspended
	Ready

	9
	ReadyToHalted
	Ready
	Halted

4.2.5 Program State Transition Stimuli

The stimuli or causes for a Program’s state transitions can be internal to the Server or external. Completion of machining steps, the detection of an alarm condition, or the transmission of a data a packet are examples of internal stimuli. Methods are an example of external stimuli. Standard Methods are defined which act as stimuli for the control of a Program.

4.2.6 Program Control Methods

Clients manage a Program by calling Methods. The Methods impact a Program’s behaviour by causing specified state transitions. The state transitions dictate the action’s performed by the Program. This specification defines a set of standard Program Control Methods. These Methods provide sufficient means for a client to run a Program.

Table 4 lists the set of defined Program Control Methods. Each Method causes transitions from specified states and must be called when the Program is in one of those states.

Individual Programs can optionally support any subset of the Program Control Methods. For example, some Programs may not be permitted to suspend and so would not provide the Suspend and Resume Methods.

Programs can support additional user defined Methods. User defined Methods must not change the behaviour of the base Program Finite State Machine.
Table 4 - Program Control Methods
	Method Name
	Description

	Start
	Causes the Program to transition from the Ready state to the Running state.

	Suspend
	Causes the Program to transition from the Running state to the Suspended state.

	Resume
	Causes the Program to transition from the Suspended state to the Running state.

	Halt
	Causes the Program to transition from the Ready, Running or Suspended state to the Halted state.

	Reset
	Causes the Program to transition from the Halted state to the Ready state.

Program Control Methods can include arguments that are used by the Program. For example, a Start method may include an options argument that specifies dynamic options used to determine some program behaviour. The arguments can differ on each ProgramType. The Method Call service specified in Part 4 defines a return status. This return status indicates the success of the Program Control Method or a reason for its failure.
4.2.7 Program State Transition Effects

A Program’s state transition generally has a cause and also yields an effect. The effect is a by product of a Program state transition that can be used by a Client to monitor the progress of the Program. Effects can be internal or external. An external effect of a state transition is the generation of an event notification. Each Program state transition is associated with a unique event. These events reflect the progression and trajectory of the Program through its set of defined states. The internal effects of a state transition can be the performance of some programmatic action such as the generation of data.

4.2.8 Program Result Data

4.2.8.1 Overview

Result data is generated by a running Program. The result data can be intermediate or final. Result data may be associated with specific Program state transitions.

4.2.8.2 Intermediate Result Data

Intermediate result data is transient and is generated by the Program in conjunction with non terminal state transitions. The data items that compose the intermediate results are defined in association with specific Program state transitions. Their values are relevant only at the transition.

Each Program state transition can be associated with different result data items. Alternately, a set of transitions can share a result data item. Percentage complete is an example of intermediate result data. The value of percentage complete is produced when the state transition occurs and is available to the client.

Clients acquire intermediate result data by subscribing to Program state transition events. The events specify the data items for each transition. When the transition occurs, the generated event conveys the result data values captured to the subscribed clients. If no Client is monitoring the Program, intermediate result data may be discarded.

4.2.8.3 Terminal Result Data

Terminal result data is the final data generated by the Program as it ceases execution. Total execution time, number of widgets produced, and fault condition encountered are examples of terminal result data. When the Program enters the terminal state, this result data can be conveyed to the client by the transition event. Terminal result data is also available within the Program to be read by a client after the program stops. This data persists until the program instance is rerun or deleted.

4.2.8.4 Monitoring Programs

Clients can monitor the activities associated with a Program’s execution. These activities include the invocation of the management methods, the generation of result data, and the progression of the Program through its states. Audit Events are provided for Method Calls and state transitions. These events allow a record to be maintained of the clients that interacted with any Program and the Program state transitions that resulted from that interaction.
4.2.9 Program Lifetime
4.2.9.1 Overview
Programs can have different lifetimes. Some programs may always be present on a Server while others are created and removed. Creation and removal can be controlled by a Client or may be restricted to local means.

A Program can be Client creatable. If a Program is client creatable, then the Client can add the Program to the server. The Object Create Method defined in Part 3 is used to create the Program Instance. The initial state of the Program can be Halted or Ready. Some Programs, for example, may require that a resource becomes available after its creation, before it is ready to run. In this case, it would be initialized in the Halted state and transition to Ready when the resource is delivered.
A Program can be Client removable. If the Program is client removable, then the Client can delete the Program Instance from the Server. The Object DeleteNode Service defined in Part 4 is used to remove the Program Instance. The Program must be in a Halted state to be removed. A Program may also be auto removable. An auto removable Program deletes itself when execution has terminated.

4.2.9.2 Program Instances

Programs can be multiple instanced or single instanced. A Server can support multiple instances of a Program if these Program instances can be run in parallel. For example, the Program may define a Start Method that has an input argument to specify which resource is acted upon by its functions. Each instance of the Program is then started designating use of different resources. The Client can discover all instances of a Program that are running on a Server. Each instance of a Program is uniquely identified on the Server and is managed independently by the Client.

4.2.9.3 Program Recycling

Programs can be run once or run multiple times (recycled). A program that is run once will remain in the Halted state indefinitely once it has run. The normal course of action would be to delete it following the inspection of its terminal results.

Recyclable Programs may have a limited or unlimited cycle count. These Programs may require a reset step to transition from the Halted state to the Ready state. This allows for replenishing resources or reinitializing parameters prior to restarting the Program. The Program Control Method “Reset” triggers this state transition and any associated actions or effects.

5 Model

5.1 General

The Program Model extends the StateMachineType and basic ObjectType Models presented in Part 5. Each Program has a type definition that is the subtype of the StateMachineType. The ProgramType describes the Finite State Machine model supported by any Program Invocation of that type. The ProgramType also defines the property set that characterize specific aspects of that Program’s behaviour such as lifetime and recycling as well as specifying the result data that is produced by the Program.

[image: image4.emf]MyProgram

States

Method

Method

Methods

MyProgramType

ProgramType

HasSubtype

StateMachineObjectType

HasSubtype

HasComponents

States

Transitions

Figure 4 - Program Type

The base ProgramType defines the standard Finite State Machine specified for all Programs. This includes the states, transitions, transition causes (Methods) and effects (Events). Subtypes of the base ProgramType can be defined to extend or more specifically characterize the behaviour of an individual Program as illustrated with “MyProgramType” in Figure 4.
5.2 ProgramType
5.2.1 Overview
The additional properties and components that compose the ProgramType are listed in Table 5. No ProgramType specific semantics are assigned to the other base ObjectType or StateMachineType Attributes or Properties.
Table 5 - ProgramType

	Attribute
	Value

	
	Includes all attributes specified for the StateMachineType

	BrowseName
	ProgramType

	IsAbstract
	False

	
	

	References
	NodeClass
	BrowseName
	Data
Type
	TypeDefinition
	Modelling
Rule

	HasProperty
	Variable
	Creatable
	Boolean
	PropertyType
	None

	HasProperty
	Variable
	Deletabe
	Boolean
	PropertyType
	New

	HasProperty
	Variable
	AutoDelete
	Boolean
	PropertyType
	Shared

	HasProperty
	Variable
	RecycleCount
	Int32
	PropertyType
	New

	HasProperty
	Variable
	InstanceCount
	UInt32
	PropertyType
	None

	HasProperty
	Variable
	MaxInstanceCount
	UInt32
	PropertyType
	None

	HasProperty
	Variable
	MaxRecycleCount
	UInt32
	PropertyType
	None

	
	
	
	
	
	

	HasComponent
	Variable
	ProgramDiagnostic
	
	ProgramDiagnosticType
	OptionalNew

	
	
	
	
	
	

	InitialState
	Object
	(Halted or Ready)
	
	StateType
	

	HasComponent
	Object
	Halted
	
	StateType
	New

	HasComponent
	Object
	Ready
	
	StateType
	New

	HasComponent
	Object
	Running
	
	StateType
	New

	HasComponent
	Object
	Suspended
	
	StateType
	New

	
	
	
	
	
	

	HasComponent
	Object
	HaltedToReady
	
	TransitionType
	New

	HasComponent
	Object
	ReadyToRunning
	
	TransitionType
	New

	HasComponent
	Object
	RunningToHalted
	
	TransitionType
	New

	HasComponent
	Object
	RunningToReady
	
	TransitionType
	New

	HasComponent
	Object
	RunningToSuspended
	
	TransitionType
	New

	HasComponent
	Object
	SuspendedToRunning
	
	TransitionType
	New

	HasComponent
	Object
	SuspendedToHalted
	
	TransitionType
	New

	HasComponent
	Object
	SuspendedToReady
	
	TransitionType
	New

	HasComponent
	Object
	ReadyToHalted
	
	TransitionType
	New

	
	
	
	
	
	

	HasComponent
	Method
	Start
	
	
	OptionalNew

	HasComponent
	Method
	Suspend
	
	
	OptionalNew

	HasComponent
	Method
	Reset
	
	
	OptionalNew

	HasComponent
	Method
	Halt
	
	
	OptionalNew

	HasComponent
	Method
	Resume
	
	
	OptionalNew

	
	
	
	
	
	

	HasComponent
	Object
	FinalResultData
	
	BaseObjectType
	OptionalNew

	
	
	
	
	
	

5.2.2 ProgramType Properties

The Creatable Property is a Boolean that specifies if Program Invocations of this ProgramType can be created by an OPC Client. If False, these Program Invocations are persistent or may only be created by the server.

The Deletable Property is a Boolean that specifies if a Program Invocation of this ProgramType can be deleted by an OPC Client. If False, these Program Invocations can only be deleted by the server.

The AutoDelete Property is a Boolean that specifies if Program Invocations of this ProgramType are removed by the Server when execution terminates. If False, these Program Invocations persist on the server until they are deleted by the Client. When the Program Invocation is deleted, any result data associated with the instance is also removed.

The RecycleCount Property is an unsigned integer that specifies the number of times a Program Invocation of this type has been recycled or restarted from its starting point (not resumed). Note: The Reset Method may be required to prepare a Program to be restarted.
The MaxRecycleCount Property is an integer that specifies the maximum number of times a Program Invocation of this type can be recycled or restarted from its starting point (not resumed). If the value is less than 0, there is no limit to the number of restarts. If the value is zero, the Program may not be recycled or restarted.
The InstanceCount Property is an unsigned integer that specifies the number of Program Invocations of this type that currently exist.
The MaxInstanceCount Property is an integer that specifies the maximum number of Program Invocations of this type that can exist simultaneously on this Server. If the value is less than 0, there is no limit.
5.2.3 ProgramType Components
5.2.3.1 Overview
The ProgramType Components consists of a set of references to the object instances of StateTypes, TransitionTypes, EventTypes and the Methods that collectively define the Program FiniteStateMachine.

[image: image5.emf]Start

FromState

ToState

HasEffect

Has Cause

TransitionType

StateType

ReadyToRunning

Running

Ready

BaseEventType

TransitionEventType

Figure 5 - Program FSM References

Figure 5 illustrates the Component References that define the associations between two of the ProgramType’s states, Ready and Running. The complementary ReferenceTypes have been omitted to simplify the illustration.
5.2.3.2 ProgramType States

Table 6 specifies the ProgramType’s State Objects. These State Objects are instances of the StateType defined in Part 5 - SM Appendix. Each State is assigned a unique StateNumber value. Subtypes of the ProgramType can add references from any state to a subordinate or nested StateMachine Object to extend the FinitStateMachine.
Table 6 - Program States

	BrowseName
	References
	Target BrowseName
	Value
	Target TypeDefinition
	Notes

	States

	Halted
	HasProperty
	StateNumber
	1
	PropertyType
	

	
	ToTransition
	HaltedToReady
	
	TransitionType
	

	
	FromTransition
	RunningToHalted
	
	TransitionType
	

	
	FromTransition
	SuspendedToHalted
	
	TransitionType
	

	
	FromTransition
	ReadyToHalted
	
	TransitionType
	

	
	
	
	
	
	

	Ready
	HasProperty
	StateNumber
	2
	PropertyType
	

	
	FromTransition
	HaltedToReady
	
	TransitionType
	

	
	ToTransition
	ReadyToRunning
	
	TransitionType
	

	
	FromTransition
	RunningToReady
	
	TransitionType
	

	
	ToTransition
	ReadyToHalted
	
	TransitionType
	

	
	
	
	
	
	

	Running
	HasProperty
	StateNumber
	3
	PropertyType
	

	
	ToTransition
	RunningToHalted
	
	TransitionType
	

	
	ToTransition
	RunningToReady
	
	TransitionType
	

	
	ToTransition
	RunningToSuspended
	
	TransitionType
	

	
	FromTransition
	ReadyToRunning
	
	TransitionType
	

	
	FromTransition
	SuspendedToRunning
	
	TransitionType
	

	
	
	
	
	
	

	Suspended
	HasProperty
	StateNumber
	4
	PropertyType
	

	
	ToTransition
	SuspendedToRunning
	
	TransitionType
	

	
	ToTransition
	SuspendedToHalted
	
	TransitionType
	

	
	ToTransition
	SuspendedToReady
	
	TransitionType
	

	
	FromTransition
	RunningToSuspended
	
	TransitionType
	

	
	
	
	
	
	

The Halted state is the idle state for a Program. It can be an initial state or a terminal state. As an initial state, the Program Invocation can not yet begin execution due to conditions at the server. As a terminal state, Halted can indicate either a failed or completed Program. A subordinate state or result can be used to distinguish the nature of the termination. The Halted state references four Transition Objects, which identify the allowed state transitions to the Ready state and from the Ready, Running, and Suspended States.

The Ready state indicates that the Program is prepared begin execution. Programs that are ready to begin upon their creation may transition immediately to the Ready State. The Ready state references four Transition Objects, which identify the allowed state transitions to the Running and Halted states and from the Halted and Ready states.

The Running state indicates that the Program is actively performing its function. The Ready state references five Transition Objects, which identify the allowed state transitions to the Halted, Ready, and Suspended states and from the Ready and Suspended States.

The Suspended state indicates that the Program has stopped performing its function, but retains the ability to resume the function at the point at which it was executing when suspended. The Suspended state references four Transition Objects, which identify the allowed state transitions to the Ready state and from the Ready, Running, and Suspended States.

5.2.3.2.1 Program Initial State

The initial state of a ProgramType is the state that the Program Invocation assumes upon creation. This State is formally specified in the Program Finite State Machine by defining an InitialState Reference in the ProgramType. The InitialState Reference Type is defined in Part 5 - SM Appendix. If specified, the target of the InitialState Reference must be either the Halted State or the Ready State. In some Programs, the initial state can vary and would not be referenced. If these Halted or Ready States contain subordinate Finite State Machines, the FSM can include an InitalState reference.
5.2.3.3 ProgramType Transitions
ProgramType Transitions are instances of Objects of the TransitionType defined in Part 5 - SM Appendix which also includes the definitions of the ToState, FromState, HasCause, and HasEffect references used. Table 7 specifies the Transitions defined for the ProgramType. Each Transition is assigned a unique TransitionNumber.
Table 7 - Program Transitions

	BrowseName
	References
	Target BrowseName
	Value
	Target TypeDefinition
	Notes

	Transitions

	HaltedToReady
	HasProperty
	TransitionNumber
	1
	PropertyType
	

	
	ToState
	Ready
	
	StateType
	

	
	FromState
	Halted
	
	StateType
	

	
	HasCause
	Reset
	
	
	Method

	
	HasEffect
	ProgramTransitionEventType
	
	
	

	
	HasEffect
	ProgramTransitionAuditEventType
	
	
	Optional

	
	
	
	
	
	

	ReadyToRunning
	HasProperty
	TransitionNumber
	2
	PropertyType
	

	
	ToState
	Running
	
	StateType
	

	
	FromState
	Ready
	
	StateType
	

	
	HasCause
	Start
	
	
	Method

	
	HasEffect
	ProgramTransitionEventType
	
	
	

	
	HasEffect
	ProgramTransitionAuditEventType
	
	
	Optional

	
	
	
	
	
	

	RunningToHalted
	HasProperty
	TransitionNumber
	3
	PropertyType
	

	
	ToState
	Halted
	
	StateType
	

	
	FromState
	Running
	
	StateType
	

	
	HasCause
	Halt
	
	
	Method

	
	HasEffect
	ProgramTransitionEventType
	
	
	

	
	HasEffect
	ProgramTransitionAuditEventType
	
	
	Optional

	
	
	
	
	
	

	RunningToReady
	HasProperty
	TransitionNumber
	4
	PropertyType
	

	
	ToState
	Ready
	
	StateType
	

	
	FromState
	Runnning
	
	StateType
	

	
	HasEffect
	ProgramTransitionEventType
	
	
	

	
	HasEffect
	ProgramTransitionAuditEventType
	
	
	Optional

	
	
	
	
	
	

	RunningToSuspended
	HasProperty
	TransitionNumber
	5
	PropertyType
	

	
	ToState
	Running
	
	StateType
	

	
	FromState
	Suspended
	
	StateType
	

	
	HasCause
	Suspend
	
	
	Method

	
	HasEffect
	ProgramTransitionEventType
	
	
	

	
	HasEffect
	ProgramTransitionAuditEventType
	
	
	Optional

	
	
	
	
	
	

	SuspendedToRunning
	HasProperty
	TransitionNumber
	6
	PropertyType
	

	
	ToState
	Running
	
	StateType
	

	
	FromState
	Suspended
	
	StateType
	

	
	HasCause
	Resume
	
	
	Method

	
	HasEffect
	ProgramTransitionEventType
	
	
	

	
	HasEffect
	ProgramTransitionAuditEventType
	
	
	Optional

	
	
	
	
	
	

	SuspendedToHalted
	HasProperty
	TransitionNumber
	7
	PropertyType
	

	
	ToState
	Halted
	
	StateType
	

	
	FromState
	Suspended
	
	StateType
	

	
	HasCause
	Halt
	
	
	Method

	
	HasEffect
	ProgramTransitionEventType
	
	
	

	
	HasEffect
	ProgramTransitionAuditEventType
	
	
	Optional

	
	
	
	
	
	

	SuspendedToReady
	HasProperty
	TransitionNumber
	8
	PropertyType
	

	
	ToState
	Ready
	
	StateType
	

	
	FromState
	Suspended
	
	StateType
	

	
	HasCause
	Reset
	
	
	Method

	
	HasEffect
	ProgramTransitionEventType
	
	
	

	
	HasEffect
	ProgramTransitionAuditEventType
	
	
	Optional

	
	
	
	
	
	

	ReadyToHalted
	HasProperty
	TransitionNumber
	9
	PropertyType
	

	
	ToState
	Halted
	
	StateType
	

	
	FromState
	Ready
	
	StateType
	

	
	HasCause
	Halt
	
	
	Method

	
	HasEffect
	ProgramTransitionEventType
	
	
	

	
	HasEffect
	ProgramTransitionAuditEventType
	
	
	Optional

The HaltedToReady transition specifies the Transition from the Halted to Ready States. It may be caused by the Reset Method.
The ReadyToRunning transition specifies the Transition from the Ready to Running States. It is caused by the Start Method.
The RunningToHalted transition specifies the Transition from the Running to Halted States. It is caused by the Halt Method.
The RunningToReady transition specifies the Transition from the Running to Ready States. The RunningToSuspended transition specifies the Transition from the Running to Suspended States. It is caused by the Suspend Method. When this transition occurs,

The SuspendedToRunning transition specifies the Transition from the Suspended to Running States. It is caused by the Resume Method.
The SuspendedToHalted transition specifies the Transition from the Suspended to Halted States. It is caused by the Halt Method.
The SuspendedToReady transition specifies the Transition from the Suspended to Ready States. It is caused by the Halt Method.
The ReadyToHalted transition specifies the Transition from the Ready to Halted States. It is caused by the Halt Method.
Two HasEffect references are specified for each Program Transition. These effects are events of type ProgramTransitionEventType and ProgramTransitionAuditEventType defined in 5.2.5. The ProgramTransitionEventType notifies Clients of the Program Transition and conveys result data. The ProgramTransitionAuditEventType can optionally be used to audit transitions that result from Program Control Methods.

[image: image6.emf]Start

HasEffect

StartInput

Arguments

HasProperty

StartOutput

Arguments

Has Property

ReadyToRunning

HasCause

TransitionEventType

IntermediateResult

Data

TransitionType

MyVariable

ProgramTransition

EventType

Figure 6 - ProgramType Causes and Effects

5.2.4 ProgramType Causes (Methods)

5.2.4.1 Overview
The ProgramType includes references to the Causes of specific Program state transitions. These causes refer to Method instances. Programs that do not support a Program Control Method, omit the Causes reference to that Method from the ProgramType references. If a Method’s Causes reference is omitted from the ProgramType, a Client cannot cause the associated state transition. The Method instances referenced by the ProgramType identify the InputArguments and OutputArguments required for the Method calls to Program Invocations of that ProgramType. Table 8 - ProgramType Causes specifies the Methods defined as Causes for ProgramTypes. Figure 6 - ProgramType Causes and Effects illustrates the references associating the components and properties of Methods and Events with ProgramTransitions.

Table 8 - ProgramType Causes

	BrowseName
	References
	Target BrowseName
	Value
	Target TypeDefinition
	Notes

	Causes

	Start
	HasProperty
	InputArguments
	
	PropertyType
	Optional

	
	HasProperty
	OutputArguments
	
	PropertyType
	Optional

	
	
	
	
	
	

	Suspend
	HasProperty
	InputArguments
	
	PropertyType
	Optional

	
	HasProperty
	OutputArguments
	
	PropertyType
	Optional

	
	
	
	
	
	

	Resume
	HasProperty
	InputArguments
	
	PropertyType
	Optional

	
	HasProperty
	OutputArguments
	
	PropertyType
	Optional

	
	
	
	
	
	

	Halt
	HasProperty
	InputArguments
	
	PropertyType
	Optional

	
	HasProperty
	OutputArguments
	
	PropertyType
	Optional

	
	
	
	
	
	

	Reset
	HasProperty
	InputArguments
	
	PropertyType
	Optional

	
	HasProperty
	OutputArguments
	
	PropertyType
	Optional

	
	
	
	
	
	

The Start Method causes the ReadyToRunning Program transition.

The Suspend Method causes the RunningToSuspended Program transition.

The Resume Method causes the SuspendedToRunning Program transition.

The Halt Method causes the RunningToHalted, SuspendedToHalted, or ReadyToHalted Program transition depending on the CurrentState of the Program.

The Reset Method causes the HaltedToReady Program transition.

5.2.4.2 Standard Attributes

The Executable Method attribute indicates if a method can currently be executed. For Program Control Methods, this means that the owning Program has a CurrentState that supports the transition caused by the Method.
5.2.4.3 Standard Properties

5.2.4.3.1 Overview
Methods can reference a set of InputArguments. For each ProgramType, a set of InputArguments may be defined for the supported Program Control Methods. The data passed in the arguments supplements the information required by the Program to perform its function. All calls to a Program Control Method for each Program Invocation of that ProgramType must pass the specified arguments.

Methods can reference a set of OutputArguments. For each ProgramType, a set of OutputArguments is defined for the supported Program Control Methods. All calls to a Program Control Method for each Program Invocation of that ProgramType must pass the specified arguments.
5.2.5 ProgramType Effects (Events)

5.2.5.1 Overview
The ProgramType includes component references to the Effects of each of the Program’s state transitions. These Effects are Events. Each Transition must have a HasEffect reference to a ProgramTransitionEventType and can have a ProgramTransitionAuditEventType. When the transition occurs, event notifications of the referenced type are generated for subscribed Clients. The Program Invocation may serve as the EventNotifier for these events or an owning object or the Server Object may provide the notifications.

ProgramTransitionEventTypes provide the means for delivering result data and confirming state transitions for subscribed Clients on each defined Program State Transition. ProgramTransitionAuditEventTypes allows the auditing of changes to the Program’s State in conjunction with auditing client Method Calls. .
5.2.5.2 ProgramTransitionEventType

The ProgramTransitionEventType is a subtype of the TransitionEventType. It is used with Programs to acquire intermediate or final results or other data associated with a state transition. A Program can have a unique ProgramTransitionEventType definition for any transition. Each ProgramTransitionEventType specifies the IntermediateResult data specific to the designated state transition on that program type. Each transition can yield different Intermediate result data. Table 9 specifies the ProgramTransitionEventType. Table 10 identifies the ProgramTransitionEventTypes that are specified for ProgramTypes.
Table 9 - ProgramTransitionEventType

	Attribute
	Value

	BrowseName
	ProgramTransitionEventType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Inherits the Properties of the base TransitionEventType defined in Part 5 SM appendix.

	HasComponent
	Object
	IntermediateResult
	
	BaseObjectType
	OptionalNew

The TransitionNumber property is a Variable that identifies the Program Transition that triggered the event.

The FromStateNumber property is a Variable that is the StateNumber of the originating state of the Program Transition.

The ToStateNumber property is a Variable that is the StateNumber of the terminal state in The Program Transition.

The IntermediateResult is an object that aggregates a set of variables whose values are relevant for the Program at the instant of the associated transition. The ObjectType for the IntermediateResult specifies the collection of variables using a set of HasComponent references.

Table 10 – ProgramTransitionEvents
	BrowseName
	References
	Target BrowseName
	Value
	Target TypeDefinition
	Notes

	Effects

	HaltedToReadyEvent
	
	
	
	
	

	
	HasProperty
	TransitionNumber
	1
	PropertyType
	

	
	HasProperty
	FromStateNumber
	1
	PropertyType
	

	
	HasProperty
	ToStateNumber
	2
	PropertyType
	

	
	HasComponent
	IntermediateResults
	
	ObjectType
	Optional

	
	
	
	
	
	

	ReadyToRunningEvent
	
	
	
	
	

	
	HasProperty
	TransitionNumber
	2
	PropertyType
	

	
	HasProperty
	FromStateNumber
	2
	PropertyType
	

	
	HasProperty
	ToStateNumber
	3
	PropertyType
	

	
	HasComponent
	IntermediateResults
	
	ObjectType
	Optional

	
	
	
	
	
	

	RunningToHaltedEvent
	
	
	
	
	

	
	HasProperty
	TransitionNumber
	3
	PropertyType
	

	
	HasProperty
	FromStateNumber
	3
	PropertyType
	

	
	HasProperty
	ToStateNumber
	1
	PropertyType
	

	
	HasComponent
	IntermediateResults
	
	ObjectType
	Optional

	
	
	
	
	
	

	RunningToReadyEvent
	
	
	
	
	

	
	HasProperty
	TransitionNumber
	4
	PropertyType
	

	
	HasProperty
	FromStateNumber
	3
	PropertyType
	

	
	HasProperty
	ToStateNumber
	2
	PropertyType
	

	
	HasComponent
	IntermediateResults
	
	ObjectType
	Optional

	
	
	
	
	
	

	RunningToSuspendedEvent
	
	
	
	
	

	
	HasProperty
	TransitionNumber
	5
	PropertyType
	

	
	HasProperty
	FromStateNumber
	3
	PropertyType
	

	
	HasProperty
	ToStateNumber
	4
	PropertyType
	

	
	HasComponent
	IntermediateResults
	
	ObjectType
	Optional

	
	
	
	
	
	

	SuspendedToRunningEvent
	
	
	
	
	

	
	HasProperty
	TransitionNumber
	6
	PropertyType
	

	
	HasProperty
	FromStateNumber
	4
	PropertyType
	

	
	HasProperty
	ToStateNumber
	3
	PropertyType
	

	
	HasComponent
	IntermediateResults
	
	ObjectType
	Optional

	
	
	
	
	
	

	SuspendedToHaltedEvent
	
	
	
	
	

	
	HasProperty
	TransitionNumber
	7
	PropertyType
	

	
	HasProperty
	FromStateNumber
	4
	PropertyType
	

	
	HasProperty
	ToStateNumber
	1
	PropertyType
	

	
	HasComponent
	IntermediateResults
	
	ObjectType
	Optional

	
	
	
	
	
	

	SuspendedToReadyEvent
	
	
	
	
	

	
	HasProperty
	TransitionNumber
	8
	PropertyType
	

	
	HasProperty
	FromStateNumber
	4
	PropertyType
	

	
	HasProperty
	ToStateNumber
	2
	PropertyType
	

	
	HasComponent
	IntermediateResults
	
	ObjectType
	Optional

	
	
	
	
	
	

	ReadyToHaltedEvent
	
	
	
	
	

	
	HasProperty
	TransitionNumber
	9
	PropertyType
	

	
	HasProperty
	FromStateNumber
	2
	PropertyType
	

	
	HasProperty
	ToStateNumber
	1
	PropertyType
	

	
	HasComponent
	IntermediateResults
	
	ObjectType
	Optional

5.2.6 ProgramTransitionAuditEventType

The ProgramTransitionAuditEventType is a subtype of the AuditUpdateStateEventType. This EventType inherits all Properties of the AuditUpdateStateEventType defined in Part 5. It is used with Programs to provide a means to audit the Program State Transitions associated with any Client invoked Program Control Method. Table 11 specifies the definition of the ProgramTransitionAuditEventType
Table 11 - ProgramTransitionAuditEvent
	Attribute
	Value

	BrowseName
	ProgramTransitionAuditEventType

	IsAbstract
	True

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	Inherits the Properties of the AuditUpdateStateEventType defined in Part 5

	HasProperty
	Variable
	TransitionNumber
	UInt32
	PropertyType
	New

The Status Property, specified in Part 5 AuditEventType, identifies whether the state transition resulted from a Program Control Method call (set Status to TRUE) or not (set Status to FALSE).
The SourceName specified in Part 5 EventType identifies the Method causing the ProgramTransition when it is the result of a client invoked ProgramControlMethod, The SourceName is prefixed with “Method/” and the name of the ProgramControlMethod, “Method/Start” for example.

The ClientUserId Property, specified in Part 5 AuditEventType, identifies the user of the Client that issued the Program Control Method if it is associated with this Program State Transition.

The ActionTimeStamp Property, specified in Part 5 AuditEventType, identifies when the time the Program State Transition that resulted in the event being generated occurred.
The TransitionNumber property is a Variable that identifies the Transition that triggered the event.

5.2.7 FinalResultData

The FinalResultData ObjectType specifies the VariableTypes that are preserved when the Program has completed its function. The ObjectType includes a HasComponent for a VariableType of each variable that comprises the FinalResultData. The values of the Variables

5.2.8 ProgramDiagnosticType

5.2.8.1 Overview

The ProgramDiagnoticType provides information that can be used to aid in the diagnosis of Program problems. This object contains a collection of Variables that chronicle the ProgramInvocation’s activity. Table 12 specifies the Variables that compose the ProgramDiagnoticType.

Table 12 - ProgramDiagnosticType
	Attribute
	Value

	BrowseName
	ProgramDiagnosticsType

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType / TypeDefinition
	Modelling
Rule

	Subtype of the BaseObjectType defined in Part 5.

	HasComponent
	Variable
	CreateSessionId
	Int32
	New

	HasComponent
	Variable
	CreateClientName
	String
	New

	HasComponent
	Variable
	InvocationCreationTime
	UTCTime
	New

	HasComponent
	Variable
	LastTransitionTime
	UTCTime
	New

	HasComponent
	Variable
	LastMethodCall
	String
	New

	HasComponent
	Variable
	LastMethodSessionId
	Int32
	New

	HasComponent
	Variable
	LastMethodInputArguments
	InputArguments
	New

	HasComponent
	Variable
	LastMethodOutputArguments
	OutputArguments
	New

	HasComponent
	Variable
	LastMethodCallTime
	UTCTime
	New

	HasComponent
	Variable
	LastMethodReturnStatus
	returnStatus
	New

The CreateSessionId contains the SessionId of the session on which the call to the Create Service was issued to create the Program Invocation.
The CreateClientName is the name of the client of the session that created the Program Invocation.

The InvocationCreationTime identifies the time the Program Invocation was created.

The LastTransitionTime identifies the time of the last program state transition that occurred.

The LastMethodCall identifies the last Program Method called on the Program Invocation.

The LastMethodSessionId contains the SessionId of the session on which the last Program Control Method call to the Program Invocation was issued.
The LastMethodClientName is the name of the client of the session that made the last Method call to the Program Invocation.

The LastMethodInputArguments preserves the values of the input arguments on the last Program Method call.

The LastMethodOutputArguments preserves the values of the output arguments on the last Program Method call.

The LastMethodCallTime identifies the time of the last Method call to the Program Invocation.

The LastMethodReturnStatus preserves the value of the returnStatus for the last Program Control Method requested for this Program Invocation.
Annex A - Program Example

A.1 Overview

This example illustrates the use of an OPC UA Program to manage a domain download into a control system as depicted in Figure 7. The download requires the segmented transfer of control operation data from a secondary storage device to the local memory within a control system.

[image: image7]
Figure 7 - Program Example 1
The Domain Download has a source and a target location which are identified when the download is initiated. Each time a segment of the domain is successfully transferred, the client is notified and informed of the amount of data that has been downloaded. The client is also notified when the download is finished. The percentage of the total data received is reported periodically while the download continues. If the download fails, the cause of the failure is reported. At the completion of the download, performance information is persisted at the OPC UA Server.

A.2 DomainDownload Program

The OPC UA Client uses the “DomainDownload” Program to manage and monitor the download of a domain at the OPC UA Server.

A.2.1 DomainDownload States

The basic state model for the DomainDownload Program is presented in Figure 8. The Program has three primary states, Ready, Running, and Halted which are aligned with the standard states of a ProgramType. Additionally, the DomainDownloadType extends the OPC UA ProgramType by defining subordinate state machines for the Program’s Running and Halted States. The subordinate states describe the download operations in greater detail and allow the OPC UA Client to monitor the activity of the download at a finer resolution.

An instance (Program Invocation) of a DownloadDomain Program is created by the client each time a download is to be performed. The instance exists until explicitly removed by the client. The initial state of the Program is Ready and the terminal state is Halted. The DomainDownload can be temporarily suspended and then resumed or aborted. Once halted, the program may not be restarted.

Error! Objects cannot be created from editing field codes.
Figure 8 – DomainDownload State Diagram

The sequence of state transitions is illustrated in Figure 8. Once the download is started, The Program progresses to the Opening state. After the source of the data is opened, a sequence of transfers occurs in the Sending state. When the transfer completes the objects are closed in the Closing State. If the transfer is terminated before all of the data is downloaded or an error is encountered, the download is halted, and the Program transitions to the Aborted state, otherwise the programs halts in the Completed state. The states are presented in Table 13 along with t he state transitions.

A.2.2 DomainDownload Transitions

The valid state transitions specified for the DomainDownload Program and are specified in Table 13. Each of the transitions defines a start state and end state for the transition and is identified by a unique number. Five of the transitions are from the base ProgramType and retain the transition identifier numbers specified for Programs. The additional transitions relate the base program states with the subordinate states defined for the DomainDownload. These states have been assigned unique transition identifier numbers distinct from the base Program transition identifiers. In cases where transitions occur between substates and the Program’s base states, two transitions are specified. One transition identifies the base state change and a second the sub-state change. For example, Ready to Running and to Opening occurs at the same time.

The table also specifies the defined states, causes for the transitions, and the effects of each transition. Program Control Methods are used by the OPC UA Client to “run” the DomainDownload. The Methods cause or trigger the specified transitions. The transition effects are the specified EventTypes which notify the client of Program activity.

Table 13 - DomainDownload States

	No.
	Transition Name
	Cause
	From State
	To State
	Effect

	2
	ReadyToRunning
	Start Method
	Ready
	Running
	Report Transition 2 Event/Result

	3
	RunningToHalted
	Halt Method/Error or Internal.
	Running
	Halted
	Report Transition 3 Event/Result

	5
	RunningToSuspended
	Suspend Method
	Running
	Suspended
	Report Transition 5 Event/Result

	6
	SuspendedToRunning
	Resume Method
	Suspended
	Running
	Report Transition 6 Event/Result

	7
	SuspendedToHalted
	Halt Method
	Suspended
	Halted
	Report Transition 7 Event/Result

	10
	OpeningToSending
	Internal
	Opening
	Sending
	Report Transition 10 Event/Result

	11
	SendingToSending
	Internal
	Sending
	Sending
	Report Transition 11 Event/Result

	12
	SendingToClosing
	Internal
	Sending
	Closing
	Report Transition 12 Event/Result

	13
	SendingToAborted
	Halt Method/Error
	Opening
	Aborted
	Report Transition 13 Event/Result

	14
	ClosingToCompleted
	Internal
	Closing
	Completed
	Report Transition 14 Event/Result

	15
	SendingToSuspended
	Suspend Method
	Sending
	Suspended
	Report Transition 16 Event/Result

	16
	SuspandedToSending
	Resume Method
	Suspended
	Sending
	Report Transition 17 Event/Result

	18
	SuspendedToAborted
	Halt Method
	Suspended
	Aborted
	Report Transition 18 Event/Result

	17
	ToOpening
	Internal
	Ready
	Opening
	Report Transition 19 Event/Result

A.2.3 DomainDownload Methods

Four standard Program Methods are specified for running the DomainDownload Program, Start, Suspend, Resume, and Halt. No additional Methods are specified. The base behaviours of these methods are defined by the ProgramType. The Start Method initiates the download activity and passes the source and destination locations for the transfer. The Suspend Method is used to pause the activity temporarily. The Resume Method reinitiates the download, when paused. The Halt Method aborts the download. Each of the methods causes a Program state transition and a sub state transition. The specific state transition depends on the current state at the time the Method is called. If a Method Call is made when the DomainDownload is in a state for which that Method has no associated transition, the Method returns an error status indicating invalid state for the method.

A.2.3.1 Method Arguments

The Start Method specifies three input arguments to be passed when it is called; Domain Name, DomainSource, and DomainDestination. The other Methods require no input arguments. No output arguments are specified for the DomainDownload methods. The resultant error status for the Program is part of the Call service.
A.2.4 DomainDownload Events

A ProgramTransitionEventType is specified for each of the DomainDownload Program transitions. The event types trigger a specific event notification to the OPC UA Client when the associated state transition occurs in the running Program instance. The event notification identifies the transition. The SendingToSending state transition also includes intermediate result data.

A.2.4.1 Event Information

The SendingToSending program transition event relays intermediate result data to the OPC UA Client along with the notification. Each time the transition occurs, data items describing the amount and percentage of data transferred is sent to the OPC UA Client.

A.2.4.2 Final Result Data

The DomainDownload Program retains final result data following a completed or aborted download. The data includes the total transaction time and the size of the domain. In the event of an aborted download, the reason for the termination is retained.

A.2.5 DomainDownload Model

A.2.5.1 Overview

The OPC UA Model for the DomainDownload.Program is presented in the following tables and figures. Collectively they define the components that constitute this program. For clarity, the figures present a progression of portions of the model that complement the contents of the tables and illustrate the Program’s composition.

The type definition for the DomainDownload Program precisely represents the behaviour of the program in terms of OPC UA components. These components can be browsed by a OPC UA Client to interpret or validate the actions of the Program.

A.2.5.2 DomainDownloadType

The DomainDownloadType is a subtype derived from the OPC UA ProgramType. It specifies the use or non-use of optional ProgramType components, valid extensions such as subordinate state machines, and constrained attribute values applied to instances of DomainDownload Programs.

Table 14 specifies the optional and extended components defined by the DomainDownload Type. Note the references to two sub State Machine Types, TransferStateMachine and FinishStateMachine. The DomainDownloadType omits references to the Reset Program Control Method and its associated state transition (HaltedToReady), which it does not support.

Figure 9 illustrates the components of DomainDownloadType and its instance, including their ownership and derivation. Transitions and EventTypes are represented by their numeric Identifiers in the figure. The references that exist between StatesTypes, TransitionTypes, EventNotificationTypes, and Methods are not shown in Figure 9.
Table 14 – DomainDownload Type

	Attribute
	Value

	
	Includes all non-optional attributes specified for the ProgramType

	BrowseName
	DomainDownloadType

	IsAbstract
	False

	
	

	References
	NodeClass
	BrowseName
	Data
Type
	TypeDefinition
	Modelling
Rule

	
	
	
	
	
	

	HasSubStateMachine
	Object
	TransferStateMachine
	
	StateMachineType
	New

	HasSubStateMachine
	Object
	FinishStateMachine
	
	StateMachineType
	New

	
	
	
	
	
	

	HasComponent
	Variable
	ProgramDiagnostic
	
	ProgramDiagnosticType
	New

	
	
	
	
	
	

	InitialState
	Object
	Ready
	
	StateType
	

	
	
	
	
	
	

	HasComponent
	Object
	ReadyToRunning
	
	TransitionType
	New

	HasComponent
	Object
	RunningToHalted
	
	TransitionType
	New

	HasComponent
	Object
	RunningToSuspended
	
	TransitionType
	New

	HasComponent
	Object
	SuspendedToRunning
	
	TransitionType
	New

	HasComponent
	Object
	SuspendedToHalted
	
	TransitionType
	New

	
	
	
	
	
	

	
	
	
	
	
	

	HasComponent
	Method
	Start
	
	
	New

	HasComponent
	Method
	Suspend
	
	
	New

	HasComponent
	Method
	Halt
	
	
	New

	HasComponent
	Method
	Resume
	
	
	New

	
	
	
	
	
	

	HasComponent
	Object
	FinalResultData
	
	BaseObjectType
	New

	
	
	
	
	
	

Table 15 Specifies the Transfer State Machine type that is a sub state machine of the DomianDownload Program Type. This State Machine Type definition identifies the State types that compose the sub states for the Program’s Running State type.

Table 15 - Transfer State Machine Type
	Attribute
	Value

	
	Includes all attributes specified for the StateMachineType

	BrowseName
	TransferStateMachineType

	IsAbstract
	False

	
	

	References
	NodeClass
	BrowseName
	Data
Type
	TypeDefinition
	Modelling
Rule

	
	
	
	
	
	

	InitialState
	Object
	Opening
	
	StateType
	

	HasComponent
	Object
	Opening
	
	StateType
	New

	HasComponent
	Object
	Sending
	
	StateType
	New

	HasComponent
	Object
	Closing
	
	StateType
	New

	
	
	
	
	
	

	HasComponent
	Object
	ReadyToOpening
	
	TransitionType
	New

	HasComponent
	Object
	OpeningToSending
	
	TransitionType
	New

	HasComponent
	Object
	SendingToClosing
	
	TransitionType
	New

	HasComponent
	Object
	SendingToAborted
	
	TransitionType
	New

	HasComponent
	Object
	SendingToSuspended
	
	TransitionType
	New

	HasComponent
	Object
	SuspendedToSending
	
	TransitionType
	New

	
	
	
	
	
	

	HasComponent
	Method
	Start
	
	
	New

	HasComponent
	Method
	Suspend
	
	
	New

	HasComponent
	Method
	Halt
	
	
	New

	HasComponent
	Method
	Resume
	
	
	New

Figure 15 specifies the StateTypes associated with the Transfer State Machine Type. All of these states are sub states of the Running state of the base ProgramType.

The Opening State is the preparation state for the domain download.

The Sending State is the activity state for the transfer in which the data is moved from the source to destination.

The Closing State is the cleanup phase of the download.

Table 16 - Transfer State Machine - States
	BrowseName
	References
	Target BrowseName
	Value
	Target TypeDefinition
	Notes

	States

	Opening
	HasProperty
	StateNumber
	5
	PropertyType
	

	
	ToTransition
	OpeningToSending
	
	TransitionType
	

	
	FromTransition
	ToOpening
	
	TransitionType
	

	
	ToTransition
	OpeningToSending
	
	TransitionType
	

	
	
	
	
	
	

	Sending
	HasProperty
	StateNumber
	6
	PropertyType
	

	
	FromTransition
	OpeningToSending
	
	TransitionType
	

	
	ToTransition
	SendingToSending
	
	TransitionType
	

	
	ToTransition
	SendingToClosing
	
	TransitionType
	

	
	ToTransition
	SendingToSuspended
	
	TransitionType
	

	
	FromTransition
	ToSending
	
	TransitionType
	

	
	
	
	
	
	

	Closing
	HasProperty
	StateNumber
	7
	PropertyType
	

	
	ToTransition
	ClosingToCompleted
	
	TransitionType
	

	
	ToTransition
	ClosingToAborted
	
	TransitionType
	

	
	FromTransition
	SendingToClosing
	
	TransitionType
	

Table 17 specifies the Finish State Machine type that is a sub state machine of the DomianDownload ProgramType. This State Machine Type definition identifies the State types that compose the sub states for the Program’s Halted State type.

Table 17 - Finish State Machine Type
	Attribute
	Value

	
	Includes all attributes specified for the StateMachineType

	BrowseName
	TransferStateMachineType

	IsAbstract
	False

	
	

	References
	NodeClass
	BrowseName
	Data
Type
	TypeDefinition
	Modelling
Rule

	
	
	
	
	
	

	HasComponent
	Object
	Completed
	
	StateType
	New

	HasComponent
	Object
	Aborted
	
	StateType
	New

Table 18 Specifies the State Types associated with the Finish State Machine Type. Note these are final states and that they have no associated transitions between them.

Table 18 - Finish State Machine - States
	BrowseName
	References
	Target BrowseName
	Value
	Target TypeDefinition
	Notes

	States

	Aborted
	HasProperty
	StateNumber
	8
	PropertyType
	

	
	FromTransition
	OpeningToAborted
	
	TransitionType
	

	
	FromTransition
	ClosingToAborted
	
	TransitionType
	

	
	
	
	
	
	

	Completed
	HasProperty
	StateNumber
	9
	PropertyType
	

	
	FromTransition
	ClosingToCompleted
	
	TransitionType
	

The Aborted State is the terminal state that indicates an incomplete or failed domain download operation.

The Completed State is the terminal state that indicates a successful domain download.

Table 19 specifies constraining behaviour of a DomainDownload.

Table 19 – DomainDownload Type Property Attributes Variable Values
	NodeClass
	BrowseName
	Data
Type
	Data Value
	Modelling
Rule

	Variable
	Creatable
	Boolean
	True
	None

	Variable
	Deletabe
	Boolean
	True
	New

	Variable
	AutoDelete
	Boolean
	False
	Shared

	Variable
	RecycleCount
	Int32
	0
	New

	Variable
	InstanceCount
	UInt32
	PropertyType
	None

	Variable
	MaxInstanceCount
	UInt32
	500
	None

	Variable
	MaxRecycleCount
	UInt32
	0
	None

A DomainDownload Program Invocation can be created and also destroyed by a OPC UA Client. The Program Invocation will not delete itself when halted, but will persist until explicitly removed by the OPC UA Client. A DomainDownload Program Invocation can not be reset to restart. The OPC UA Server will support up to 500 concurrent DomainDownload Program Invocations.

Figure 9 presents a partial DomainDownloadType model that illustrates the association between the states and the DomainDownload, Transfer, and Finish state machines. Note that the current state number for the sub state machines is only valid when the DomainDownload active base state references the sub state machine, Running for the Transfer current state and Halted for the Finish current state.

[image: image8.emf]DomainDownload

Ready

Running

Halted

DomainDownload

CurrentStateNumber

Contains the current state of

the DownloadDomain

ProgramState Machine (SM)

TransferStateMachine

Opening

TransferStateMachine CurrentStateNumber

Contains the current state of

Transfer SM if Download-

Domain is in theRunning

State otherwise invalid.

HasSubStateMachine

Sending

Closing

Aborted

Completed

Suspended

HasSubStateMachine

FinishStateMachine CurrentStateNumber

Contains the current state of

Finish SM if Download-

Domain is in the Halted State

otherwise invalid.

FinishStateMachine

TransferStateMachine FinishStateMachine

Program Control Methods and State Transitions are omitted for clarity.

StateType

Figure 9 - DomainDownloadType Partial State Model

Table 20 specifies the ProgramTransitionTypes that are defined in addition to the OPC UA ProgramTransitonTypes specified for Programs in Table 7. These types associate the Transfer and Finish sub state machine states with the states of the base Program.
Table 20 - Additonal DomainDownload Transition Types
	BrowseName
	References
	Target BrowseName
	Value
	Target TypeDefinition
	Notes

	Transitions

	
	
	
	
	
	

	ToSending
	HasProperty
	TransitionNumber
	10
	PropertyType
	

	
	ToState
	Sending
	
	StateType
	

	
	FromState
	Opening
	
	StateType
	

	
	HasCause
	Start
	
	
	Method

	
	HasEffect
	ProgramTransitionEventType
	
	
	

	
	
	
	
	
	

	SendingToSending
	HasProperty
	TransitionNumber
	11
	PropertyType
	

	
	ToState
	Sending
	
	StateType
	

	
	FromState
	Sending
	
	StateType
	

	
	HasEffect
	ProgramTransitionEventType
	
	
	

	
	
	
	
	
	

	SendingToClosing
	HasProperty
	TransitionNumber
	12
	PropertyType
	

	
	ToState
	Closing
	
	StateType
	

	
	FromState
	Sending
	
	StateType
	

	
	HasEffect
	ProgramTransitionEventType
	
	
	

	
	
	
	
	
	

	SendingToAborted
	HasProperty
	TransitionNumber
	13
	PropertyType
	

	
	ToState
	Aborted
	
	StateType
	

	
	FromState
	Closing
	
	StateType
	

	
	HasCause
	Halt
	
	
	Method

	
	HasEffect
	ProgramTransitionEventType
	
	
	

	
	
	
	
	
	

	ClosingToCompleted
	HasProperty
	TransitionNumber
	14
	PropertyType
	

	
	ToState
	Completed
	
	StateType
	

	
	FromState
	Closing
	
	StateType
	

	
	HasEffect
	ProgramTransitionEventType
	
	
	

	
	
	
	
	
	

	SendingToSuspended
	HasProperty
	TransitionNumber
	15
	PropertyType
	

	
	ToState
	Suspended
	
	StateType
	

	
	FromState
	Sending
	
	StateType
	

	
	HasCause
	Suspend
	
	
	Method

	
	HasEffect
	ProgramTransitionEventType
	
	
	

	
	
	
	
	
	

	SuspendedToSending
	HasProperty
	TransitionNumber
	16
	PropertyType
	

	
	ToState
	Sending
	
	StateType
	

	
	FromState
	Suspended
	
	StateType
	

	
	HasCause
	Resume
	
	
	Method

	
	HasEffect
	ProgramTransitionEventType
	
	
	

	
	
	
	
	
	

	SuspendedToAborted
	HasProperty
	TransitionNumber
	18
	PropertyType
	

	
	ToState
	Aborted
	
	StateType
	

	
	FromState
	Suspended
	
	StateType
	

	
	HasCause
	Halt
	
	
	Method

	
	HasEffect
	ProgramTransitionEventType
	
	
	

	
	HasEffect
	ProgramTransitionAuditEventType
	
	
	Optional

	
	
	
	
	
	

	ReadyToOpening
	HasProperty
	TransitionNumber
	17
	PropertyType
	

	
	ToState
	Opening
	
	StateType
	

	
	FromState
	Ready
	
	StateType
	

	
	HasCause
	Start
	
	
	Method

	
	HasEffect
	ProgramTransitionEventType
	
	
	

	
	HasEffect
	ProgramTransitionAuditEventType
	
	
	Optional

	
	
	
	
	
	

Figure 10 Through Figure 16 illustrate portions of the DomainDownloadType model. In each figure, the referenced States, Methods, Transitions and EventTypes are identified for one or two state transitions.

[image: image9.emf]Ready

Running Opening

Ready To Running

Start

HasCause

HasEffect

Partial DomainDownloadType Model Part 1

ToState

HasCause

TransitonEventType

19

HasEffect

ToState

To Opening

TransitonEventType

2

StateType

TransitionType

StateType

StartInput

Arguments

HasProperty

InputArguments

FromState

Figure 10 – Ready To Running Model

Figure 10 illustrates the model for the ReadyToRunning Program Transition. The transition is caused by the Start Method. The Start Method requires three input arguments. The Method Call service is used by the OPC UA Client to invoke the Start Method and pass the arguments. When successful, the Program Invocation enters the Running State and the subordinate Transfer Opening State. The OPC UA Server issues two event notifications, ReadyToRunning (2) and ToOpening (19).

Table 21 - Start Method Additions

	Attribute
	Value

	BrowseName
	Start

	IsAbstract
	False

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	HasProperty
	Variable
	InputArgument
	Argument[]
	PropertyType
	--

Table 21 specifies that the Start Method for the DomainDownloadType requires input arguments. Table 22 identifies the Start Arguments required.

Table 22 - StartArguments
	Name
	Type
	Value

	Argument 1
	structure
	

	
name
	String
	SourcePath

	
dataType
	NodeId
	StringNodeId

	
valueRank
	Int32
	-1 (-1 = scalar)

	
arrayDimensions
	UInt32[]
	null

	
description
	LocalizedText
	The source specifier for the domain.

	Argument 2
	structure
	

	
Name
	String
	DesinationPath

	
dataType
	NodeId
	StringNodeId

	
valueRank
	Int32
	-1 (-1 = scalar)

	
arrayDimensions
	UInt32[]
	null

	
description
	LocalizedText
	The destination specifier for the domain.

	Argument 3
	structure
	

	
name
	String
	DomainName

	
dataType
	NodeId
	StringNodeId

	
arrayDimensions
	UInt32[]
	null

	
valueRank
	Int32
	-1 (-1 = scalar)

	
description
	LocalizedText
	The name of the domain.

	
	
	

Figure 11 illustrates the model for the Opening To Sending and the Sending to Closing Program Transitions. As specified in the transition table, these state transitions require no Methods to occur, but rather are driven by the internal actions of the server. Event notifiers are generated for each state transition (10-12), when they occur.

[image: image10.emf]Opening

FromState

Closing

OpeningToSending

HasEffect

ToState

TransitonEventType

12

HasEffect

ToState

SendingToClosing

TransitonEventType

10

StateType

TransitionType

SendingToSending

ToState

ToState FromState

HasEffect

ProgramTransiton

EventType

11

IntermediateResult

Data

PercentComplete

Sending

FromState

StateType

Partial DomainDownloadType Model Part 2

Figure 11 - Opening To Sending To Closing Model
Notice that a state transition can initiate and terminate at the same state (Sending). In this case the transition serves a purpose. The ProgramTransitionEventType effect referenced by the SendingToSending State Transition has an IntermediateResultData object reference. The IntermediateResultData object serves to identify two variables whose values are obtained each time the state transition occurs. The values are sent to the OPC UA Client with the event notification.
Table 24
 identifies these variables as AmountTransferred and PercentageTransferred.

Table 23 - Intermediate Results Object

	Attribute
	Value

	
	Includes all attributes specified for the ObjectType

	BrowseName
	IntermediateResults

	IsAbstract
	False

	
	

	References
	NodeClass
	BrowseName
	Data
Type
	TypeDefinition
	Modelling
Rule

	HasComponent
	Variable
	AmountTransferred
	Long
	VariableType
	New

	HasComponent
	Variable
	PercentageTransferred
	Long
	VariableType
	New

	
	
	
	
	
	

Table 24 - Immediate Result Data Variables
	Immediate Result Variables
	Type
	Value

	Variable 1
	Structure
	

	
Name
	String
	AmountTransferred

	
dataType
	NodeId
	StringNodeId

	
description
	LocalizedText
	Bytes of domain data transferred.

	Variable 2
	Structure
	

	
Name
	String
	PercentageTransferred

	
dataType
	NodeId
	StringNodeId

	
description
	LocalizedText
	Percentage of domain data transferred..

The model for the Running To Suspended state transition is illustratd in Figure 12 . The cause for this transition is the Suspend Method. The OPC UA Client can pause the download of domain data to the control. The transition from Running to Suspended evokes the event notifiers for TransitionEventTypes 5 and 16. Note that there is no longer a valid current state for the Transfer State Machine.

[image: image11.emf]Running

Suspended Sending

RunningToSuspended

Suspend

HasCause

HasEffect

ToState

HasCause

TransitonEventType

16

HasEffect

FromState

FromSending

TransitonEventType

5

StateType

TransitionType

StateType

FromState

Partial DomainDownloadType Model Part 3

Figure 12 - Running To Suspended Model
The model for the Suspended To Running state transition is illustrated in Figure 13. The cause for this transition is the Resume Method. The OPC UA Client can resume the download of domain data to the control. The transition from Suspended to Running evokes the event notifiers for TransitionEventTypes 6 and 17. Now that the Running state is active, the Sending State of the Transfer State Machine is again specified for the CurrentStateNumber.

[image: image12.emf]Running

Suspended Sending

SuspendedToRunning

Resume

HasCause

HasEffect

FromState

HasCause

TransitonEventType

17

HasEffect

ToState

ToSending

TransitonEventType

6

StateType

TransitionType

StateType

ToState

Partial DomainDownloadType Model Part 4

Figure 13 - Suspended To Running Model
The model for the Running To Halted state transition for an abnormal termination of the domain download is illustrated in Figure 14. The cause for this transition is the Halt Method. The OPC UA Client can terminate the download of domain data to the control. The transition from Running To Halted evokes the event notifiers for TransitionEventTypes 3 and 15. The TransitionEventType 15 indicates the transition from the Sending State as the Running State is exited and to the Aborted State as the Halted State is entered.

[image: image13.emf]Halted

Running

RunningToHalted

Halt

HasCause

HasEffect

Partial DomainDownloadType Model Part 5

FromState

HasCause

TransitonEventType

15

HasEffect

FromState

FromSending

TransitonEventType

3

StateType

TransitionType

StateType

ToState

Aborted

ToState

Sending

Figure 14 - Running To Halted - Aborted Model
Figure 15 illustrates the model for the Suspended To Halted state transition for an abnormal termination of the domain download. The cause for this transition is the Halt Method. The OPC UA Client can terminate the download of domain data to the control while it is suspended. The transition from Suspended To Halted evokes the event notifiers for TransitionEventTypes 7 and 18.

[image: image14.emf]Halted

Suspended

Suspended

Halt

HasCause

HasEffect

FromState

HasCause

TransitonEventType

18

HasEffect

FromState

ToAborted

TransitonEventType

7

StateType

TransitionType

StateType

ToState

Aborted

ToState

Suspended

Partial DomainDownloadType Model Part 7

Figure 15 - Suspended To Aborted Model

The model for the Running To Completed state transition for a normal termination of the domain download is illustrated in Figure 16. The cause for this transition is internal. The transition from Closing To Halted evokes the event notifiers for TransitionEventTypes 3 and 14. The TransitionEventType 14 indicates the transition from the Closing State as the Running State is exited and to the Completed State as the Halted State is entered.

The DomainDownloadType includes a component reference to a FInalResultData object. This object references variables that persists information about the domain download once it has completed. This data can be read by OPC UA Clients who are not subscribed to event notifications.

 Table 25 - Final Result Data

	Attribute
	Value

	
	Includes all attributes specified for the ObjectType

	BrowseName
	FinalResultData

	IsAbstract
	False

	
	

	References
	NodeClass
	BrowseName
	Data
Type
	TypeDefinition
	Modelling
Rule

	HasComponent
	Variable
	DownloadPerformance
	Long
	VariableType
	New

	HasComponent
	Variable
	FailureDetails
	Long
	VariableType
	New

The Domain Download net transfer data rate and detailed reason for aborted downloads is retained as final result data for each Program Invocation.

Table 26 - Final Result Variables

	Final Result Variables
	Type
	Value

	Variable 1
	Structure
	

	
Name
	String
	DownloadPerformance

	
dataType
	NodeId
	Double

	
description
	LocalizedText
	Data rate for domain data transferred.

	Variable 2
	Structure
	

	
Name
	String
	FailureDetails

	
dataType
	NodeId
	StringNodeId

	
description
	LocalizedText
	Description of reason for abort.

[image: image15.emf]Halted

Running

RunningToHalted

HasEffect

Partial DomainDownloadType Model Part 6

FromState

TransitonEventType

14

HasEffect

FromState

FromClosing

TransitonEventType

3

StateType

TransitionType

StateType

ToState

Completed

ToState

Closing

FinalResultData

DownloadPerformance

DomainDownload

Type

Figure 16 - Running To Completed Model

A.2.5.3 Sequence of Operations

Figure 17 illustrates a normal sequence of service exchanges between a OPC UA Client and OPC UA Server that would occur during the life cycle of a DomainDownloadType Program Invocation.

[image: image16]
Figure 17 - Sequence of Operations
Final result Data

Program Invocation deleted

Remove Node

Event Notifier, ToCompleted

Event Notifier, RunningToHalted

Event Notifier, SendingToClosing

Event Notifier, SendingToSending 100%

Event Notifier, SendingToSending 50%

Event Notifier, ToSending 20%

Event Notifier, SuspendedToRunning

Domain Download Resumed

Call Resume

Event Notifier, RunningToSuspended

Domain Download Paused

Call Suspend

Event Notifier, OpeningToSending

Event Notifier, ToOpening

Event Notifier, ReadyToRunning

Domain Download Initiated

Call Start

Program Invocation created

Create Object

UA Server

UA Client

Create: Create the program to perform the download

Start: Initiate the download activity.

Pause: Suspend the download temporarily.

Resume: Resume the download.

Halt: Terminate the download prior to completion.

Program

Local Memory

Domain

Download

Data

Hard Disk

Control System

HMI

9

6

4

2

1

SUSPENDED

READY

HALTED

RUNNING

5

8

7

3

Palletizing

Packaging

Labelling

Filling

Cleaning

[image: image17.png]m 1 —

Ta TR

-J_DCIJL

[image: image18.png]

[image: image19.png]

[image: image20.png]

[image: image21.png]

[image: image22.jpg]

[image: image23.wmf]_1225092184.vsd
ObjectType

Reference
/ InverseName (optional)

Object

Object

ObjectType

Method

ReferenceType

Reference
/ InverseName (optional)

ReferenceType

Reference
/ InverseName (optional)

VariableType

Object

ObjectType

Asymmetric
Reference

VariableType

Variable

MyVariable

TransitionEventType

ProgramTransition
EventType

Start

IntermediateResult
Data

HasCause

Has Property

TransitionType

ReadyToRunning

HasEffect

HasProperty

StartOutput
Arguments

StartInput
Arguments

_1231592198.vsd
Seitlichen Ziehpunkt ziehen, um Breite des Textblocks zu ändern.

Text

Object

Reference
/ InverseName (optional)

Variable

Object

Reference
/ InverseName (optional)

Object

Reference
/ InverseName (optional)

Object

Variable

Variable:VariableType

Attribute
NodeId = 123
Description = „Something“

Property
MyProperty = 123
NodeVersion = 1

ReferenceType

Reference
/ InverseName (optional)

ObjectType

Reference
/ InverseName (optional)

Object

ObjectType

Method

Variable

ObjectType

VariableType

VariableType

Variable

ObjectType

Object

Object:ObjectType

Attribute
NodeId = 123
Description = „Something“

Property
MyProperty = 123
NodeVersion = 1

Reference
/ InverseName (optional)

Object

Variable

ObjectType

VariableType

Method

DataType

Asymmetric
Reference

Symmetric
Reference

View

ReferenceType

ObjectType

Asymmetric
Reference

VariableType

Object

VariableType

ObjectType

Object

Method

Variable

Symmetric
Reference

Asymmetric
Reference

Object

View

ObjectType

Asymmetric
Reference

Symmetric
Reference

Asymmetric
Reference

Text

Object

Text

Variable

ObjectType

Variable

Object

Asymmetric
Reference

Method

Method

Object

RunningToSuspended

FromSending

TransitonEventType
5

StateType

TransitionType

StateType

HasCause

Running

Suspended

HasEffect

TransitonEventType
16

FromState

FromState

Sending

ToState

Suspend

HasCause

HasEffect

_1231592268.vsd
Seitlichen Ziehpunkt ziehen, um Breite des Textblocks zu ändern.

Text

Object

Reference
/ InverseName (optional)

Variable

Object

Reference
/ InverseName (optional)

Object

Reference
/ InverseName (optional)

Object

Variable

Variable:VariableType

Attribute
NodeId = 123
Description = „Something“

Property
MyProperty = 123
NodeVersion = 1

ReferenceType

Reference
/ InverseName (optional)

ObjectType

Reference
/ InverseName (optional)

Object

ObjectType

Method

Variable

ObjectType

VariableType

VariableType

Variable

ObjectType

Object

Object:ObjectType

Attribute
NodeId = 123
Description = „Something“

Property
MyProperty = 123
NodeVersion = 1

Reference
/ InverseName (optional)

Object

Variable

ObjectType

VariableType

Method

DataType

Asymmetric
Reference

Symmetric
Reference

View

ReferenceType

ObjectType

Asymmetric
Reference

VariableType

Object

VariableType

ObjectType

Object

Method

Variable

Symmetric
Reference

Asymmetric
Reference

Object

View

ObjectType

Asymmetric
Reference

Symmetric
Reference

Asymmetric
Reference

Text

Object

Text

Variable

ObjectType

Variable

Object

Asymmetric
Reference

Method

Method

Object

RunningToHalted

FromSending

TransitonEventType
3

StateType

TransitionType

StateType

HasCause

Halted

Running

HasEffect

TransitonEventType
15

FromState

ToState

Sending

_1231592314.vsd
Seitlichen Ziehpunkt ziehen, um Breite des Textblocks zu ändern.

Text

Object

Reference
/ InverseName (optional)

Variable

Object

Reference
/ InverseName (optional)

Object

Reference
/ InverseName (optional)

Object

Variable

Variable:VariableType

Attribute
NodeId = 123
Description = „Something“

Property
MyProperty = 123
NodeVersion = 1

ReferenceType

Reference
/ InverseName (optional)

ObjectType

Reference
/ InverseName (optional)

Object

ObjectType

Method

Variable

ObjectType

VariableType

VariableType

Variable

ObjectType

Object

Object:ObjectType

Attribute
NodeId = 123
Description = „Something“

Property
MyProperty = 123
NodeVersion = 1

Reference
/ InverseName (optional)

Object

Variable

ObjectType

VariableType

Method

DataType

Asymmetric
Reference

Symmetric
Reference

View

ReferenceType

ObjectType

Asymmetric
Reference

VariableType

Object

VariableType

ObjectType

Object

Method

Variable

Symmetric
Reference

Asymmetric
Reference

Object

View

ObjectType

Asymmetric
Reference

Symmetric
Reference

Asymmetric
Reference

Text

Object

Text

Variable

ObjectType

Variable

Object

Asymmetric
Reference

Method

Method

Object

Suspended

ToAborted

TransitonEventType
7

StateType

TransitionType

StateType

HasCause

Halted

Suspended

HasEffect

TransitonEventType
18

FromState

ToState

Suspended

_1231615406.vsd
Seitlichen Ziehpunkt ziehen, um Breite des Textblocks zu ändern.

Text

Object

Reference
/ InverseName (optional)

Variable

Object

Reference
/ InverseName (optional)

Object

Reference
/ InverseName (optional)

Object

Variable

Variable:VariableType

Attribute
NodeId = 123
Description = „Something“

Property
MyProperty = 123
NodeVersion = 1

ReferenceType

Reference
/ InverseName (optional)

ObjectType

Reference
/ InverseName (optional)

Object

ObjectType

Method

Variable

ObjectType

VariableType

VariableType

Variable

ObjectType

Object

Object:ObjectType

Attribute
NodeId = 123
Description = „Something“

Property
MyProperty = 123
NodeVersion = 1

Reference
/ InverseName (optional)

Object

Variable

ObjectType

VariableType

Method

DataType

Asymmetric
Reference

Symmetric
Reference

View

ReferenceType

ObjectType

Asymmetric
Reference

VariableType

Object

VariableType

ObjectType

Object

Method

Variable

Symmetric
Reference

Asymmetric
Reference

Object

View

ObjectType

Asymmetric
Reference

Symmetric
Reference

Asymmetric
Reference

Text

Object

Text

Variable

ObjectType

Variable

Object

Asymmetric
Reference

Method

Method

Object

Variable

RunningToHalted

FromClosing

TransitonEventType
3

StateType

TransitionType

StateType

Halted

Running

HasEffect

TransitonEventType
14

FromState

ToState

Closing

_1231592234.vsd
Seitlichen Ziehpunkt ziehen, um Breite des Textblocks zu ändern.

Text

Object

Reference
/ InverseName (optional)

Variable

Object

Reference
/ InverseName (optional)

Object

Reference
/ InverseName (optional)

Object

Variable

Variable:VariableType

Attribute
NodeId = 123
Description = „Something“

Property
MyProperty = 123
NodeVersion = 1

ReferenceType

Reference
/ InverseName (optional)

ObjectType

Reference
/ InverseName (optional)

Object

ObjectType

Method

Variable

ObjectType

VariableType

VariableType

Variable

ObjectType

Object

Object:ObjectType

Attribute
NodeId = 123
Description = „Something“

Property
MyProperty = 123
NodeVersion = 1

Reference
/ InverseName (optional)

Object

Variable

ObjectType

VariableType

Method

DataType

Asymmetric
Reference

Symmetric
Reference

View

ReferenceType

ObjectType

Asymmetric
Reference

VariableType

Object

VariableType

ObjectType

Object

Method

Variable

Symmetric
Reference

Asymmetric
Reference

Object

View

ObjectType

Asymmetric
Reference

Symmetric
Reference

Asymmetric
Reference

Text

Object

Text

Variable

ObjectType

Variable

Object

Asymmetric
Reference

Method

Method

Object

SuspendedToRunning

ToSending

TransitonEventType
6

StateType

TransitionType

StateType

HasCause

Running

Suspended

HasEffect

TransitonEventType
17

ToState

ToState

Sending

_1231592121.vsd
Seitlichen Ziehpunkt ziehen, um Breite des Textblocks zu ändern.

Text

Object

Reference
/ InverseName (optional)

Variable

Object

Reference
/ InverseName (optional)

Object

Reference
/ InverseName (optional)

Object

Variable

Variable:VariableType

Attribute
NodeId = 123
Description = „Something“

Property
MyProperty = 123
NodeVersion = 1

ReferenceType

Reference
/ InverseName (optional)

ObjectType

Reference
/ InverseName (optional)

Object

ObjectType

Method

Variable

ObjectType

VariableType

VariableType

Variable

ObjectType

Object

Object:ObjectType

Attribute
NodeId = 123
Description = „Something“

Property
MyProperty = 123
NodeVersion = 1

Reference
/ InverseName (optional)

Object

Variable

ObjectType

VariableType

Method

DataType

Asymmetric
Reference

Symmetric
Reference

View

ReferenceType

ObjectType

Asymmetric
Reference

VariableType

Object

VariableType

ObjectType

Object

Method

Variable

Symmetric
Reference

Asymmetric
Reference

Object

View

ObjectType

Asymmetric
Reference

Symmetric
Reference

Asymmetric
Reference

Text

Object

Text

Variable

ObjectType

Variable

Object

Asymmetric
Reference

Method

Method

Object

Ready To Running

To Opening

TransitonEventType
2

StateType

TransitionType

StateType

HasCause

Ready

Running

HasEffect

TransitonEventType
19

ToState

StartInput
Arguments

HasProperty

Opening

_1231592168.vsd
Seitlichen Ziehpunkt ziehen, um Breite des Textblocks zu ändern.

Text

Object

Reference
/ InverseName (optional)

Variable

Object

Reference
/ InverseName (optional)

Object

Reference
/ InverseName (optional)

Object

Variable

Variable:VariableType

Attribute
NodeId = 123
Description = „Something“

Property
MyProperty = 123
NodeVersion = 1

ReferenceType

Reference
/ InverseName (optional)

ObjectType

Reference
/ InverseName (optional)

Object

ObjectType

Method

Variable

ObjectType

VariableType

VariableType

Variable

ObjectType

Object

Object:ObjectType

Attribute
NodeId = 123
Description = „Something“

Property
MyProperty = 123
NodeVersion = 1

Reference
/ InverseName (optional)

Object

Variable

ObjectType

VariableType

Method

DataType

Asymmetric
Reference

Symmetric
Reference

View

ReferenceType

ObjectType

Asymmetric
Reference

VariableType

Object

VariableType

ObjectType

Object

Method

Variable

Symmetric
Reference

Asymmetric
Reference

Object

View

ObjectType

Asymmetric
Reference

Symmetric
Reference

Asymmetric
Reference

Text

Object

Text

Variable

ObjectType

Variable

Object

Asymmetric
Reference

Method

Method

Object

Variable

OpeningToSending

SendingToClosing

ToState

TransitonEventType
10

StateType

TransitionType

ToState

Opening

Sending

ToState

HasEffect

TransitonEventType
12

ToState

SendingToSending

FromState

FromState

HasEffect

ProgramTransiton
EventType 11

Closing

FromState

HasEffect

IntermediateResult
Data

PercentComplete

StateType

_1231520942.vsd
Seitlichen Ziehpunkt ziehen, um Breite des Textblocks zu ändern.

Text

Object

Reference
/ InverseName (optional)

Variable

Object

Reference
/ InverseName (optional)

Object

Reference
/ InverseName (optional)

Object

Variable

Variable:VariableType

Attribute
NodeId = 123
Description = „Something“

Property
MyProperty = 123
NodeVersion = 1

ReferenceType

Reference
/ InverseName (optional)

ObjectType

Reference
/ InverseName (optional)

Object

ObjectType

Method

Variable

ObjectType

VariableType

VariableType

Variable

ObjectType

Object

Object:ObjectType

Attribute
NodeId = 123
Description = „Something“

Property
MyProperty = 123
NodeVersion = 1

Reference
/ InverseName (optional)

Object

Variable

ObjectType

VariableType

Method

DataType

Asymmetric
Reference

Symmetric
Reference

View

ReferenceType

ObjectType

Asymmetric
Reference

VariableType

Object

VariableType

ObjectType

Object

Method

Variable

Symmetric
Reference

Asymmetric
Reference

Object

View

ObjectType

Asymmetric
Reference

Symmetric
Reference

Asymmetric
Reference

Text

Object

Text

Variable

ObjectType

Variable

Object

Asymmetric
Reference

Method

DomainDownload

Suspended

Sending

Closing

Aborted

Ready

Running

Halted

DomainDownload

CurrentStateNumber

_1224593527.vsd
ObjectType

Reference
/ InverseName (optional)

Object

Object:ObjectType

Attribute
NodeId = 123
Description = „Something“

Property
MyProperty = 123
NodeVersion = 1

Reference
/ InverseName (optional)

Method

ObjectType

Object

HasSubtype

HasComponents

States

HasSubtype

StateMachineObjectType

MyProgram

ProgramType

Transitions

States

Methods

MyProgramType

_1225091669.vsd
ObjectType

Reference
/ InverseName (optional)

Object

Object

ObjectType

Method

ReferenceType

Reference
/ InverseName (optional)

ReferenceType

Asymmetric
Reference

Object

Variable

Method

View

ObjectType

VariableType

ReferenceType

DataType

ReadyToRunning

StateType

Start

TransitionType

Running

Ready

Has Cause

FromState

ToState

HasEffect

BaseEventType

TransitionEventType

_1216643152.doc

Get Description

Control Methods

Program

Manage

Monitor

State Machine

________()

________()

________()

Result Data

Get Results

Transition Events
